Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

In the title compound, $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{ClF}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}$, the benzene and pyrazolyl rings form a dihedral angle of $15.9(3)^{\circ}$.

Comment

In order to explore the Fries-type rearrangement of 5pyrazolyl esters, the products of which are active ingredients of herbicides (Konotsune \& Kawakubo, 1975; Tanaka et al., 1999; Mayer et al., 2000), the title compound, (I), was prepared via 4-chlorobenzoylation of 5-hydroxylpyrazole. The molecular structure of (I) (Fig. 1 and Table 1) shows that the benzene and pyrazolyl rings are essentially planar, with mean deviations of 0.005 and $0.003 \AA$, respectively. The dihedral angle formed between these rings is $15.9(3)^{\circ}$.

(I)

Experimental

To a mixture of benzene $(20 \mathrm{ml})$ and water $(2 \mathrm{ml})$ were added 1-tert-butyl-3-(trifluoromethyl)pyrazolone (Liu \& Li, 2004; $0.83 \mathrm{~g}, 4 \mathrm{mmol}$), anhydrous sodium carbonate ($0.28 \mathrm{~g}, 2 \mathrm{mmol}$) and a catalytic amount of tetrabutylammonium bromide. 4-Chlorobenzoyl chloride $(0.70 \mathrm{~g}$, 4 mmol) in benzene (5 ml) was added dropwise within 30 min at 283 K , and stirred at room temperature for 1 h . The aqueous layer was removed and the benzene layer was evaporated under reduced pressure. The crude product was purified by silica-gel column chromatography (ethyl acetate/petroleum ether $=1: 25$) to afford 1.14 g of (I) as a white solid in 82% yield (m.p. $357-359 \mathrm{~K}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{Cl}\right)$: $\delta 1.67(s, 9 \mathrm{H}), 6.53(s, 1 \mathrm{H}), 7.55(d, 2 \mathrm{H}, J=9 \mathrm{~Hz}), 8.11(d, 2 \mathrm{H}, J=$ $9 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 160.8,144.4,141.4,139.0,131.6$ (2C), 129.6 (2C), 126.1, 122.1, 95.1, 61.1, 29.2 (3C). Suitable crystals were obtained by the slow evaporation of a mixture of ethyl acetate and n hexane.

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{ClF}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}$	$D_{x}=1.449 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=346.73$	Mo $K \alpha$ radiation
Monoclinic, $P 2_{1} / c$	Cell parameters from 2353
$a=7.270(2) \AA$	reflections
$b=11.927(4) \AA$	$\theta=2.2-24.1^{\circ}$
$c=18.528(6) \AA$	$\mu=0.28 \mathrm{~mm}^{-1}$
$\beta=98.240(5)^{\circ}$	$T=294(2) \mathrm{K}$
$V=1589.9(8) \AA^{3}$	Block, colourless
$Z=4$	$0.34 \times 0.29 \times 0.20 \mathrm{~mm}$

Received 24 May 2005 Accepted 10 June 2005 Online 17 June 2005

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
Disorder in main residue
R factor $=0.038$
$w R$ factor $=0.096$
Data-to-parameter ratio $=12.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

1-tert-Butyl-3-(trifluoromethyl)-1H-pyrazol-5-yl 4-chlorobenzoate

organic papers

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.892, T_{\text {max }}=0.945$
8641 measured reflections

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0291 P)^{2}\right. \\
& +0.5765 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.002 \\
& \Delta \rho_{\text {max }}=0.18 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.18 \mathrm{e}_{\AA^{-3}}
\end{aligned}
$$

3242 independent reflections
1832 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.034$
$\theta_{\text {max }}=26.4^{\circ}$
$h=-9 \rightarrow 8$
$k=-14 \rightarrow 10$
$l=-23 \rightarrow 23$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.096$
$S=1.00$
3242 reflections
268 parameters
H -atom parameters constrained

Figure 1
A view of (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. Only the major component of the disordered CF_{3} group is shown.
and the site occupancies were fixed at 0.5:0.4:0.1 at the final refinement stage.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

References

Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Konotsune, T. \& Kawakubo, K. (1975). US Patent No. 4, 063925.
Liu, W. D. \& Li, J. S. (2004). Chin. J. Pest. Sci. 6, 17-21.
Mayer, G., Baumann, E., Von Deyn, W., Kudis, S., Langemann, K., Misslitz, U., Neidlein, U., Witschel, M., Rack, M., Volk, T., Otten, M., Westphalen, K. \& Walter, H. (2000). US Patent No. 6, 541423.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Tanaka, K., Adachi, H., Koguchi, M. \& Takahashi, A. (1999). US Patent No. 6, 245716.

